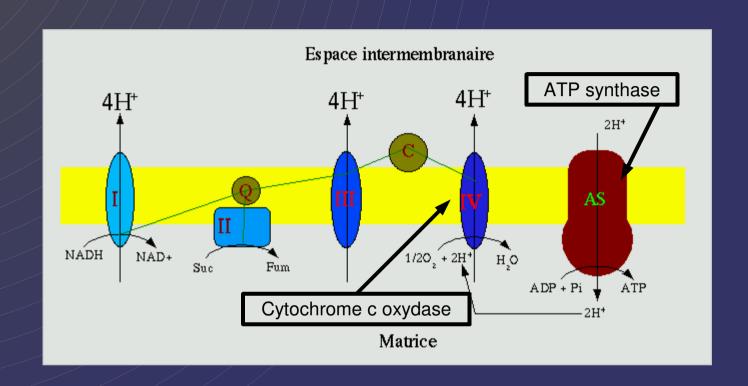
LE STRESS OXYDANT

Plan


- 1.Introduction
- 2. Origines du stress oxydant
- 3.Les espèces oxygénées activées
- 4. Conséquences du Stress oxydant
- 5. « Un paradoxe: l'utilité des radicaux libres »
- 6.Les systèmes antioxydants
- 7. Stress oxydant et exercice

Oxygène → H₂O (chaîne respiratoire mitochondriale)
O₂: accepteur final des électrons libérés (formation ATP)

Réduction quasi-instantanée de l'O₂ au cours de la respiration:

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2O$$

Pas d'états réduits intermédiaires (EOA, R.L)

Réaction assurée par:

- Complexes protéiques (cytochrome c oxydase)
- Oxydation de NADH, FADH₂ (équivalents réduits)

<u>Imperfections de la chaîne respiratoire</u>

- Les électrons sont apportés un à un
- 2 à 5% est convertie en espèces oxygénées activées (EOA)
 (radicaux libres)

$$e^{-}$$
 $2H^{+} + e^{-}$ e^{-} $H^{+} + e^{-}$
 $O_{2} \longrightarrow O_{2} \longrightarrow H_{2}O_{2} \longrightarrow OH^{\circ} \longrightarrow H_{2}O$

Intermédiaires réduits de l'oxygène.
« Les quatre étapes de réduction monoélectronique de l'oxygène »

• Les EOA ou ROS:

sont dotées de propriétés oxydantes réaction avec différents substrats biologiques

- lipides
- protéines
- ADN
- glucose

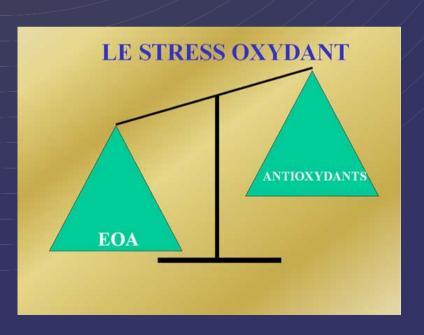
Radicaux libres (R.L)

• Un radical libre:

est une espèce chimique (atome ou molécule) possédant un électron non apparié sur son orbitale externe. Du fait de sa très grande réactivité, un radical libre a une durée de vie très courte (10-3 à 10-6 seconde).

Déséquilibre transitoire:

Contrôlé par l'acceptation ou le transfert d'un e


- Instabilité « modérée »: gain d'e (R.L = étape transitoire)
- Instabilité « élevée »: transfert d'e vers une autre molécule (oxydation définitive et réaction en chaîne)

2. Origines du stress oxydant

2. Origines du stress oxydant

Equilibre physiologique

- R.L produits en permanence
- Systèmes de défense: antioxydants

Le « Stress Oxydant » rupture d'équilibre en faveur des antioxydants

- déficit en antioxydants
- surproduction de radicaux libres
- les deux

2. Origines du stress oxydant

Origines multiples:

- Intoxications aux métaux lourds (mercure, plomb, cadium)
- Irradiations (UV, rayons X...)
- Phénomènes d'ischémies/reperfusions (thromboses, exercice)
- Carences nutritionnelles (vitamines, oligo-éléments)
- Anomalies génétiques (mauvais codage pour une protéine)

Localisé:

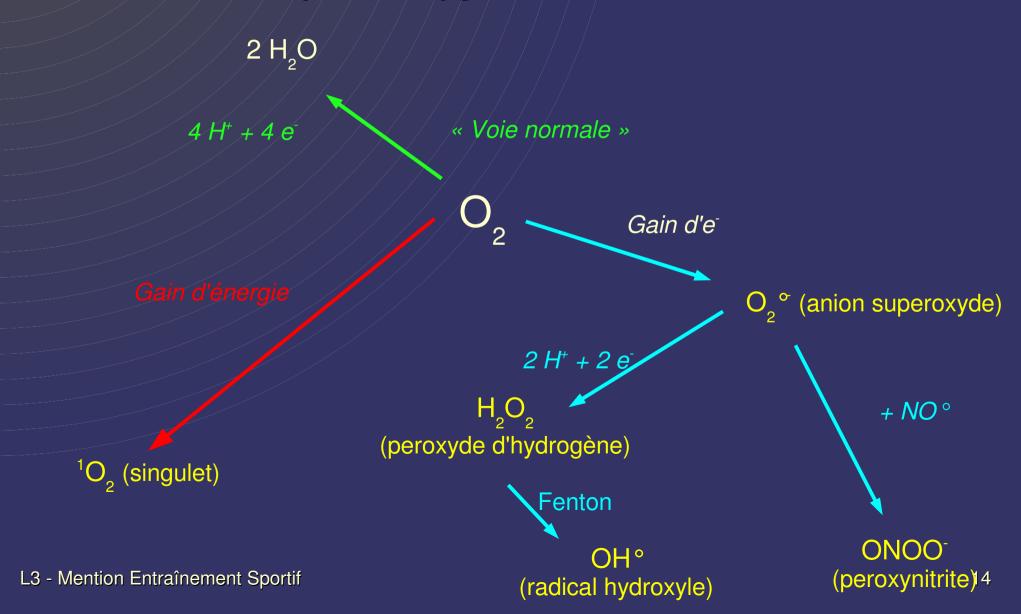
- Niveau tissulaire
- Type cellulaire précis
- Pas au niveau de l'organisme entier

Origines variées :

- R.L: dérivés de l'oxygène ou de l'azote
- EOA: requiert la présence de métaux de transition

Les différents radicaux:

- Anion superoxyde (O2°)
- Radical hydroxyle (OH°)
- Monoxyde d'azote (NO°)
- Radical peroxyle (ROO°)
- Radical alkoxyle (RO°)


Radicaux libres primaires

Dérivés oxygénés non radicalaires:

- Oxygène singulet (¹O₂)
- Peroxyde d'hydrogène (H₂O₂)
- Nitroperoxyde (ONOOH)
- Peroxynitrite (ONOO-)

Toxicité importante

Formation des espèces oxygénés

Production des espèces oxygénés

Mécanismes enzymatiques

- Mitochondries (chaîne respiratoire)
- Cellules phagocytaires (macrophages et polynucléaire)

$$(NADPH \rightarrow O_2^{\circ}: \text{``ensity burst oxydatif'})$$

- Réticulum endoplasmique (détoxification via cyt. P450)
- Xanthine oxydase (catabolisme ATP → O₂°)
- Ions métalliques (Fe, Cu): H₂O₂ → OH°
 (séquestrés dans des protéines spécialisées)

Production des espèces oxygénés

Mécanismes non enzymatiques:

- Auto-oxydation des catécholamines, quinones, flavines
 (O₂°)
- Facteurs environnementaux (UV, ultra-sons, radiations ionisantes, catalyseur métalliques)
- Alcool, tabac, médicaments
- Phénomènes d'ischémie-reperfusion

- Implications dans de nombreuses pathologies
- EOA réagissent avec toute une série de substrats biologiques
 - Les protéines
 - Les lipides
 - L'ADN
 - Les sucres

Maladies liées au stress oxydant

Principalement liées à l'âge et au vieillissement:

- Diminution antioxydants
- Augmentation de la production de radicaux libres

Cause initiale:

cancer, cataracte, sclérose latérale amyotrophique, syndrome de détresse respiratoire aigu, oedème pulmonaire...

Aggravation du processus initial (Potentialisation):

maladies cardiovasculaires, diabète, alzheimer, rhumatismes...

Maladies liées au stress oxydant

Exemple: le SIDA

- processus initial: infection virale
- virus induit un stress oxydant (réprime le gène de la SOD de Gpx)
- facilite la mort des lymphocytes T par apoptose

Les protéines

- Dénaturation (introduction d'un groupement carbonyl C=O)
- Fragmentation

Les sucres

En présence de traces métalliques:

Oxydation du glucose avec libération de d'H₂O₂ et d'OH°

L'ADN

- Coupures et mort cellulaire
- Mutations carcinogènes

Cassures et mutations

Si anomalie des « réparations »:

erreurs de transcription

erreurs de synthèse (mutation ponctuelle)

erreurs de réplication (conduit à l'apoptose)

Les lipides

Peroxydation lipidique

Mécanisme en chaîne de dégradation des acides gras membranaires conduisant à la formation d'hydroperoxydes (ROOH) instables, responsables de la diminution de la fluidité membranaire

(ac.gras polyinsaturés de lipoprotéines ou de la membrane cellulaire)

- Altération du fonctionnement des membranes
- Dépôts de lipides oxydés dans les vaisseaux ou les tissus âgés
- Genèse de dérivés carcinogènes

« Un paradoxe »

Les R.L de l'oxygène ou de l'azote pas uniquement toxiques:

- produits par divers mécanismes physiologiques
- régulation des fonctions cellulaires

« Gestion » des situations de stress contrôle du niveau de prooxydants

- Immunité
 - Phagocytose (« burst oxydatif »)
 - activation de gènes impliqués dans la réponse immunitaire
- Fonctionnement de certaines enzymes et neurones
- Transduction de signaux cellulaires (messagers cellulaires induisant une réponse au stress : T°, UV).

- Apoptose
- Prolifération cellulaire
- Cycle et différentiation cellulaire
- Dilatation capillaire (NO, CO)
- Fécondation de l'ovule
- Régulation des gènes (induction de gènes antioxydant : SOD-Mn, Catalase, Ferritine, HO)

Neutralisation d'un oxydant (composé réducteur)

2 systèmes de défense:

- Enzymatique
- Non enzymatique

Les systèmes de défense enzymatiques

- Superoxyde dismutase (SOD)
- Catalase
- Glutathion peroxydase (Gpx)

anion superoxyde (O₂°) peroxyde d'hydrogène (H₂O₂)

radical hydroxyle (OH°)
oxygène singulet (¹O₂)
radicaux hydroperoxyles (ROO°)

Les systèmes de défense enzymatiques

Superoxyde dismutase (SOD)

- Co-facteur métallique (Cu, Zn, Mn)
- Localisée dans le cytosol et mitochondries (Cu et Zn-SOD et Mn-SOD)
- Catalyse la dismutation de l'anion superoxyde (O2°)

SOD-(ox) +
$$O_2^{\sigma}$$
 \longrightarrow SOD-(red) + O_2^{σ}
SOD-(red) + O_2^{σ} + $2H^+$ \longrightarrow SOD-(ox) + $H_2O_2^{\sigma}$
 O_2^{σ} + O_2^{σ} + $2H^+$ \longrightarrow O_2 + H_2O_2

Les systèmes de défense enzymatiques

Catalase

- Localisée dans les peroxysomes (myocarde)
- Elimination du peroxyde d'hydrogène (H₂O₂)

$$H_2O_2 + H_2O_2 \longrightarrow 2 H_2O + O_2$$

Les systèmes de défense enzymatiques

Glutathion peroxydase (Gpx)

- Co-facteur (sélénium)
- Localisée dans le cytosol et la matrice mitochondriale
- Dégradation des peroxydes organiques et du peroxyde

d'hydrogène (H₂O₂)

2 GSH (réduit) +
$$H_2O_2 \longrightarrow GSSG + 2 H_2O$$

2 GSH + R-OOH
$$\longrightarrow$$
 GSSG + H₂O + R-OH

GSH: γ-glutamyl-cystéinnyl-glycine GSSG: = 2GSH reliées par un pont disulfure (S-S)

Les systèmes de défense non enzymatiques

- Vitamines (C, E)
- Oligo-éléments (Se, Cu, Zn)
- Acide urique (métabolisme des purines)
- Composés à groupement thiol (-SH)

Importance de l'alimentation

- Fourniture de molécules antioxydantes (non synthétisées)
- Fraction non énergétique

Fruits et Légumes

- Minéraux
- Oligo-éléments
- Vitamines (C, E, A): effets synergiques
- Polyphénols

flavonoïdes (oignons, ail, agrumes, citron) tanins (thé, vin, raisin)

Etude SU.VI.MAX
Fruits et légumes / effets sur la cancerogenèse

- Supplémentation en vitamines et minéraux antioxydant (équivalent à l'apport d'une « alimentation saine »
- 13000 personnes (35-65 ans)
- Risque de cancer et mortalité diminués de 30% chez l'homme
- Pas d'effet chez la femme (hyp. Hygiène de vie)

Les vitamines

- Captent l'électron libre du R.L qui devient une molécule ou un ion stable
- La vitamine devient un radical détruit ou régénéré

<u>α-tocophérol (vitamine E)</u>

- antioxydant très puissant
- inhibition peroxydation lipidique (stoppe la propagation

radicalaire: cède un e-)

Acide ascorbique (vitamine C)

- antioxydant très puissant (capte O₂° et OH°)
- inhibition peroxydation lipidique
- Régénération vitamine E

 R° + Vit C - OH \longrightarrow RH + Vit C - O $^{\circ}$

Les oligo-éléments

- Sélénium (Se): co-facteur de la Gpx
- Cuivre (Cu): co-facteur de la SOD / métal de transition (↑ = S.O)
- Zinc (Zn): co-facteur de la SOD
 induction de protéines antioxydantes
 protection des groupents thiols (-SH) des protéines
 inhibition partielle de la formation des EOA (induites par Fe et Cu)

Acide urique et groupements thiols

- Acide urique (métabolisme des purines): réagit avec le radical hydroxyle (OH°)
- Groupements thiol (-SH): réagissent avec les EOA

Exercice ~ stress:

- Conséquences métaboliques (atteintes des structures cellulaires)
- Production de R.L et élévation T° → lésions tissulaires

Production accrue de R.L lors d'un exercice d'intensité élevée

- Augmentation VO₂
- Hyperthermie
- Ischémie-reperfusion locale
- oxydation spontanée de l'épinéphrine, des catécholamines ou de l'acide lactique

Production R.L x 10

Dillard et coll. 1978

Elimination du pentane:80% d'accroissement à 75% VO₂max

Alessio 1993

Production de R.L proportionnelle à l'I d'exercice

Jackson 1998

Formation R.L > contractions isométriques et concentriques vs excentrique (consommation en O₂ inf.)

Origine des R.L formés à l'exercice

- mitochondrie musculaire (2 à 5% synthétisé en anion superoxyde)
- xanthine oxydase (musculaire et hépatique)
- cellules phagocytaires (macrophages, neutrophiles)
- protéines ferriques (microlésions des fibres musculaires)

Mécanismes de défense: la SOD

Animal

- + 50% SOD à l'exercice dans muscle, foie, coeur, poumons, erythrocytes (Li 1998; Radak et coll. 2000)
- Perdure 2-3 jours

<u>Homme</u>

- Activité de la SOD proportionnelle à VO₂max (Jenkis; Frieland et
- Howald 1984)
- Activité augmente dans les 3 jours post (exercice 45' à 70% VO₂max) (Khassaf et coll. 2001)

Mécanismes de défense: la catalase

Pas d'effets (production dans les peroxysomes)

Animal

Mécanismes de défense: la Gpx

<u>Animal</u> Résultats controversés

Homme

Augmentation de l'activité de la Gpx (Evelo et coll. 1992)

Autres mécanismes de défense:

Augmentation temporaire vitamine E
 Exercice excentrique ou premières minutes d'un semi-marathon
 (Pincemail et al., Eur J Appl Physiol, 1988:57:189-191; Gohil et al., J Appl Physiol 1988:64:115-9).

Intérêt d'une supplémentation ?:

		Placebo		Antioxydants	
	norme	avant	après	avant	après
Vitamine C(μg/mL)	6,21- 15,18	10,42±3,54	7,36±4,42	9,98±1,89	9,43±1,69
Vitamine E (μg/mL)	8 – 15	9,51±1,59	7,55±0,13	9,20± 2 ,75	9,00±3,73
Sélénium (μg/mL)	94 – 130	105,25±7,8	95,25±4,79	106,40±1 0 ,11	114,0±9,63
SOD (UI/g Hb)	785 - 1570	611± 25	738± 82	649±86	806±88
Gpx (UI/g Hb)	30 – 55	71,2 ±20,2	88,5± 28 ,7	77±13,04	94,00±15,00
Peroxydes lipidiques (µg/mL)		273,3±53,6	476,3± 251 ,0	206,8± 34,02	237,00±54,96

Exemple d'une randonnée de 20 jours dans l'himalaya: groupe placebo vs apport complémentaire en antioxydants (vitamine C, E, A; sélénium, zinc)

Conclusion

- Production de R.L continue
- Phénomènes potentiellement délétères
- Existences de mécanismes de « défenses »
- Contrôle de la propagation (équilibre)
- Déséquilibre: atteintes cellulaires et maladies